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ABSTRACT
BACKGROUND: Both subjective cognitive decline (SCD) and a family history of Alzheimer’s disease (AD) portend risk
of brain abnormalities and progression to dementia. Posterior default mode network (pDMN) connectivity is altered
early in the course of AD. It is unclear whether SCD predicts similar outcomes in cognitively normal individuals with a
family history of AD.
METHODS: We studied 124 asymptomatic individuals with a family history of AD (age 64 6 5 years). Participants
were categorized as having SCD if they reported that their memory was becoming worse (SCD1). We used extensive
neuropsychological assessment to investigate five different cognitive domain performances at baseline (n = 124) and
1 year later (n = 59). We assessed interconnectivity among three a priori defined ROIs: pDMN, anterior ventral DMN,
medial temporal memory system (MTMS), and the connectivity of each with the rest of brain.
RESULTS: Sixty-eight (55%) participants reported SCD. Baseline cognitive performance was comparable between
groups (all false discovery rate-adjusted p values . .05). At follow-up, immediate and delayed memory improved
across groups, but the improvement in immediate memory was reduced in SCD1 compared with SCD2 (all false
discovery rate–adjusted p values , .05). When compared with SCD2, SCD1 subjects showed increased pDMN–
MTMS connectivity (false discovery rate–adjusted p , .05). Higher connectivity between the MTMS and the rest of
the brain was associated with better baseline immediate memory, attention, and global cognition, whereas higher
MTMS and pDMN–MTMS connectivity were associated with lower immediate memory over time (all false
discovery rate–adjusted p values , .05).
CONCLUSIONS: SCD in cognitively normal individuals is associated with diminished immediate memory practice
effects and a brain connectivity pattern that mirrors early AD-related connectivity failure.

Keywords: Alzheimer’s disease, Cognition, Default mode network connectivity, Family history of dementia, Resting-
state functional MRI, Subjective cognitive decline
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Subjective experience of cognitive decline (SCD) and a family
history of Alzheimer’s disease (AD) are two risk factors for
dementia. SCD is associated with a three- to sixfold increased
risk of clinical progression to dementia in cognitively normal
individuals (1), whereas a family history of AD dementia gives a
two- to threefold increased risk (2–4). First-degree relatives
with AD dementia and self-perceived decline are two relatively
common phenomena in cognitively normal individuals (5), but
individuals with both risk factors may not necessarily develop
AD dementia. The aim of this study is to investigate whether
SCD is informative in individuals with a family history of AD,
and might therefore help predict who will develop dementia.

AD dementia takes years to develop, during which time one
may observe gradual cognitive, structural, and functional brain
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changes (6,7). Memory clinic studies have shown that persons
with SCD have hypometabolism in the precuneus (8),
decreased gray matter volumes (9,10), and cortical thinning in
medial temporal regions (11), which may be related to an
increased risk of incident clinical progression (12,13). In addi-
tion, in normal individuals, a family history of AD dementia is
associated with decreased regional brain volumes (14–16).
Others have demonstrated that connectivity changes involving
the posterior default mode network (pDMN), comprising largely
the posterior cingulate cortex, are evident in the earliest
stages of AD dementia (17,18). It has been suggested that
brain hyperconnectivity in the pDMN compensates for early
pathophysiological processes but later gives way to global
brain hypoconnectivity, perhaps resulting from sustained
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excitotoxicity (18,19). Functional brain changes may precede
structural abnormalities and clinical symptoms and may
therefore serve as a potential early AD biomarker (20,21). Thus
far, cross-sectional memory clinic studies have shown
increased DMN connectivity in SCD patients compared to AD
patients and control subjects (22,23). By contrast, others found
that decreased connectivity in resting state and visual net-
works was related to a higher degree of cognitive complaints
across individuals with preclinical and prodromal AD (24). It
remains unclear whether SCD is related to DMN connectivity in
relatively young community-dwelling individuals with a family
history of AD, and whether altered functional connectivity is
predictive of early cognitive changes.

In the longitudinal Pre-symptomatic Evaluation of Novel or
Experimental Treatments for Alzheimer’s Disease (PREVENT-
AD) cohort study we investigated 1) whether SCD is associated
with altered brain connectivity in the medial temporal memory
system (MTMS), anterior ventral DMN (avDMN) and pDMN,
and 2) whether brain connectivity, SCD, or both are related to
objective cognitive performance.

METHODS AND MATERIALS

Study Population

Data used in the preparation of this article were obtained from
the PREVENT-AD program (http://www.douglas.qc.ca/page/
prevent-alzheimer) data release 3.0 (November 30, 2016).
The primary goal of PREVENT-AD is to test whether serial
determination of multimodal biomarkers of AD may be
measured and used in presymptomatic persons who are at
high risk of subsequent AD dementia to trace the progression
of the disease process and to measure the effects of any
potentially preventive treatment interventions. We studied a
convenience sample of 124 asymptomatic individuals who
were not enrolled in any treatment studies with available in-
formation on SCD (1), structural magnetic resonance imaging
(MRI) and resting-state functional MRI (rsfMRI) from the
PREVENT-AD cohort (25). Briefly, volunteer participants in this
cohort were 60 years of age or older ($55 years if their age was
within 15 years of their youngest affected relative’s dementia
onset) and were required to have at least 6 years of formal
education, to demonstrate fluency in either English or French,
and to be in good general health. They were required to have a
parental or multiple-sibling family history of AD dementia,
documented either by a diagnosis of AD from a specialist or by
a reported history of “AD-like dementia.” The latter was defined
as a memory or other cognitive deficit from uncertain causes
that had an insidious onset and evolved gradually to a state of
cognitive disability sufficient to cause impaired daily func-
tioning (26). Participants underwent a screening physical and
neurological and cognitive assessment using the Montreal
Cognitive Assessment and Clinical Dementia Rating scale.
Their annual visits include a 1.5-hour sequence of MRI ac-
quisitions and more extensive psychometric assessment using
the Repeatable Battery for Assessment of Neuropsychological
Status (27). Persons with questionable cognitive deficits were
referred for full neuropsychological assessment. The Institu-
tional Review Board of the McGill Faculty of Medicine
approved the study. All participants provided written informed
consent for each stage of study.
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SCD Assessment

We used a single validated “SCD question” that has a positive
predictive value for AD (1,28,29) to classify participants as
either SCD2 or SCD1. During a structured interview, partici-
pants were classified as having SCD1 if they answered “yes”
to the question “Do you think your memory is becoming
worse?” Conversely, participants were classified SCD2 if they
responded “no” to this question. Furthermore, the Everyday
Cognition Questionnaire was administered to all participants
and was used to investigate the degree of self-reported
cognitive complaints in the following cognitive domains:
memory, language, attention, planning, organization skills, and
visuospatial skills (30). In addition, neuroticism and depressive
symptoms were measured using the 44-item Big Five
Inventory (31) and 15-item Geriatric Depression Scale
respectively (32). Neuropsychological assessment and brain
imaging were done on the same day, and most individuals
completed the SCD interview on a different day (mean 6
standard deviation [SD], 5 6 3 months), with a maximum of
1 year between assessments.

Neuropsychological Assessment

Objective cognitive performance was assessed at one annual
visit (n = 124) and again a year later (n = 59) using an equivalent
alternative version of the Repeatable Battery for Assessment of
Neuropsychological Status (12 6 1 months) (27). This battery
provides a global cognitive score consisting of five composite
index scores: immediate and delayed memory, attention,
language, and visuospatial functioning (from a total of 12
individual tests). Repeatable Battery for Assessment of Neuro-
psychological Status composite scores were Z-transformed
using initial scores as a reference. Baseline neuropsychological
data was comparable between subjects with one time point
compared to thosewith two timepoints (Supplemental TableS1).

MRI Acquisition

MRI data acquisition procedures have been documented
elsewhere (33). In brief, MRI scans were acquired using a 3T
Magnetom Tim Trio (Siemens Corp., Erlangen, Germany).
Structural T1-weighted images were obtained using a gradiet
recalled echo sequence (repetition time 2300 ms; echo time
2.98 ms; fractional anisotropy 9�; matrix size 256 3 256; voxel
size 13 13 1 mm3; 176 slices). For rsfMRI scans, we acquired
two consecutive functional T2*-weighted images for 5 minutes
each with a blood oxygen level–dependent sensitive, single-
shot echo-planar sequence (repetition time 2000 ms;
volumes = 150; echo time 30 ms; fractional anisotropy 90�;
matrix size 64 3 64; voxel size 4 3 4 3 4 mm3; 32 slices).
Dummy scans were used to obtain a steady-state magneti-
zation, and these volumes were automatically rejected during
data acquisition.

Image Analysis

rsfMRI data were preprocessed with default settings using
the Neuroimaging Analysis Kit (version 0.12.17, available at
http://niak.simexp-lab.org), using GNU Octave (version 4.0),
and the Minc toolkit (version 0.3.18, available at http://www.bic.
mni.mcgill.ca/ServicesSoftware/MINC), running on Guillimin.
Briefly, functional images were motion-corrected, time-filtered
ay 2018; 3:463–472 www.sobp.org/BPCNNI
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Figure 1. (A) Functional brain parcellation. (B) Regions of interest (left to
right): posterior default mode network (pDMN) with medial temporal memory
system (MTMS); anteroventral DMN (avDMN) and MTMS; and avDMN and
pDMN. (C) Connectivity separated for subjective cognitive decline (SCD)
status. The left side of part C represents connectivity between the regions of
interest and the rest of the brain; the right side of partC represents connectivity
between the regions of interest. Analyseswere adjusted for age, gender, frame
displacement, and apolipoprotein E ε4 genotype. †Uncorrected p, .05; *false
discovery rate–corrected p , .05. MTMS consisted of the hippocampus,
parahippocampus, retrosplenial, and inferior parietal and ventromedial pre-
frontal cortices. Data presented as mean 6 95% confidence intervals (CIs).
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(0.01-Hz high-pass cut-off), nonlinearly spatially normalized
(Montreal Neurological Institute International Consortium for
Brain Mapping 152), resampled (3-mm isotropic), and
smoothed at 6 mm full width at half maximum. In addition, a
regression of confounds was performed to account for slow
time drifts, high frequencies, motion parameters, average
signal of the white matter, and the ventricles (http://niak.
simexp-lab.org/pipe_preprocessing.html) (33). As part of the
preprocessing, frame displacement was automatically calcu-
lated by Neuroimaging Analysis Kit to assess excessive motion
between frames (in reference to groupwise averages). For each
frame exceeding a frame displacement of 0.5 mm, the indi-
vidual frame was removed (scrubbed), along with one adjacent
frame before and two consecutive frames after. Images passed
quality control if 1) functional and structural images were
correctly registered (spatial correlation r . .75, Neuroimaging
Analysis Kit preprocessing report); 2) no spatial normalization
or image artefacts were present during visual inspection; and
3) at least one out of two functional scans with a minimum of
50 frames (100 s) remained after scrubbing procedures.
Overall, 14 subjects failed quality control procedures
(8 excluded because of insufficient frames in both runs, 6
excluded due to image artefacts), leaving 124 for analysis (118
with two runs, 6 with one). Results were essentially unchanged
when restricting to individuals with two runs, or rsfMRI ac-
quisitions with more than 100 and 180 volumes (Supplemental
Table S2). Demographic characteristics of the current fMRI
subsample were similar to those of the entire PREVENT-AD
cohort (25). A functional parcellation scheme was generated
with bootstrap analysis of stable clusters (34,35) on the
Cambridge sample of the 1000 Functional Connectomes
Project, and the following regions of interest (ROIs) defined a
priori were used (18,36): pDMN, avDMN, and MTMS, the latter
consisting of the hippocampus, parahippocampus, retro-
splenial, and posterior inferior parietal and ventromedial pre-
frontal cortices (Figure 1). These ROIs have previously been
shown to play a role in the cascading network failure related to
AD (18), with the pDMN showing the earliest vulnerability. The
advantage of a bootstrap analysis of stable clusters–generated
template is that it provides regions with a principled and
maximized resting-state network stability at different resolu-
tions (37) (the template is available at https://figshare.com/
articles/Group_multiscale _functional_template_generated_
with_BASC_on_the_Cambridge_sample/1285615). The par-
cellation template with 122 parcels was superimposed on an
Automated Anatomical Labeling brain atlas to select our a
priori defined ROIs (Figure 1B). Subsequently, single-subject
regional Fisher Z-transformed Pearson correlation values,
based on the average time series of all voxels between ROIs
(of either one or two runs), were extracted using MATLAB
software (The MathWorks, Inc., Natick, MA). Six connectivity
estimates were extracted: 1) pDMN with the rest of the brain
(measured as one ROI representing all cortical parcels
excluding the pDMN parcel); 2) avDMN with the rest of the
brain; 3) MTMS with the rest of the brain; and interconnectivity
among 4) pDMN–MTMS ROIs, 5) pDMN–avDMN ROIs, and 6)
MTMS–avDMN ROIs (Figure 1). The rationale for investigating
connectivity between each ROI in relation to the rest of the
brain is because DMN regions exhibit a great geodesic cortical
distance and support an overarching organization of large-
Biological Psychiatry: Cognitive Neuroscience and
scale connectivity, which could be vulnerable for neuropsy-
chiatric conditions (38). The dorsomedial prefrontal cortex was
used as a control region within the DMN network because this
subdivision is unimpaired until later stages of AD (18).

Apolipoprotein E ε4 Genotype

DNA was extracted from buffy coat samples using the
QiaSymphony DNA kit (Qiagen, Toronto, Canada), and subse-
quently the PyroMark Q96 pyrosequencer (Qiagen) was used to
determine the apolipoprotein E (APOE) genotype. The DNA
was amplified using reverse transcriptase–polymerase chain
reaction, forward primers 50-ACGGCTGTCCAAGGAGCTG-30

(rs429358) and 50-CTCCGCGATGCCGATGAC-30 (rs7412), and
reverse biotinylated primers 50-CACCTCGCCGCGGTACTG-30

(rs429358) and 50-CCCCGGCCTGGTACACTG-30 (rs7412).
The DNA was sequenced with these primers: 50-CGGACAT
GGAGGACG-30 (rs429358) and 50-CGATGACCTGCAGAAG-30

(rs7412).
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Figure 2. (A) Associations between medial
temporal memory system (MTMS) and the
rest of the brain (all parcels excluding the
MTMS parcels) and baseline immediate
memory recall. (B) Associations between
anterior ventral default mode network
(avDMN) and posterior DMN (pDMN) con-
nectivity and baseline global cognition. (C)
Standardized b estimates for connectivity
measures on longitudinal cognitive perfor-
mance (nonsignificant [p . .05] b estimates
are displayed as transparent). Cognitive
scores have been Z-transformed so that the
variances are 1, and standardized b esti-
mates refer to how many standard deviations
cognition will change, per standard deviation
increase in the connectivity variable. Re-
siduals of fixed predicted effects were used
for scatterplots. SCD, subjective cognitive
decline.

Cognitive Complaints Are Related to Brain Connectivity
Biological
Psychiatry:
CNNI
Statistical Analyses

Statistical analyses were performed with SPSS software
(version 20.0.0; IBM Corp., Armonk NY). Clinical, imaging
(quality control; i.e., rsfMRI number of volumes and frame
displacement), and demographic variables were analyzed with
t tests for continuous variables and c2 tests for discrete vari-
ables. To investigate the main effect of SCD with connectivity
(i.e., single-subject Fisher Z-transformed regional Pearson
correlations), we performed separate univariate linear regres-
sion analyses between SCD (independent variable) and
strength of connectivity in a priori defined ROIs (dependent
variable). Analyses were adjusted for age, gender, and head
movement during rsfMRI (frame displacement) (model 1). We
additionally adjusted for APOE ε4 genotype (model 2). In
secondary analyses, we adjusted for depressive symptoms
(Geriatric Depression Scale) and neuroticism (model 3), and for
mean cortical thickness (model 4), because these could
confound connectivity results (39–42). To ensure that our
rsfMRI results were not reflective of atrophy patterns, we also
compared regional cortical thickness estimates (based on the
Desikan-Killiany Atlas) between SCD1 and SCD2, which did
not show any differences (Supplemental Table S3) (43,44). In a
second set of analyses, we investigated the associations of
SCD and connectivity with cognition. To do so, we performed
linear mixed models to investigate the separate main effects of
connectivity and SCD (independent variables) on baseline and
follow-up cognitive functioning (dependent variables) for each
cognitive domain (45). The models for the effects of SCD on
466 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
cognition included terms for subject as a random effect, time,
SCD status, and SCD by time interaction, whereas the models
for the effects of connectivity on cognition included terms for
subject as a random effect, time, connectivity and connectivity
by time interaction. In a post hoc analysis, we sought to
investigate the joint effects of SCD status and connectivity on
cognitive decline. The models included terms for subject as a
random effect, SCD by time, connectivity by time, and time by
connectivity by SCD. The models were adjusted for age,
education and gender. Standardized betas were reported if
p , .05. The false discovery rate (FDR) procedure was used to
correct for multiple testing in all analyses (46). Residualized
data (fixed effects) were used to create scatterplots. For
exploratory purposes, and to investigate whether other brain
regions showed altered connectivity between SCD groups
(independent variable), regression analyses (adjusted for age,
gender, head movement, and APOE ε4 genotype) were per-
formed between our three a priori defined ROIs and all other
brain parcels (Supplemental Figure S1).

RESULTS

Descriptive and Clinical Data

Demographic and clinical data are shown in Table 1. Sixty-
eight (55%) participants reported SCD (SCD1). Compared
to participants without SCD (SCD2), they reported more
cognitive complaints on the Everyday Cognition Questionnaire
domains of memory, attention, and language (p , .05), but not
ay 2018; 3:463–472 www.sobp.org/BPCNNI
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Table 1. Demographic and Clinical Data

Baseline Data Follow-up Data

No. SCD, n = 56 SCD, n = 68 p No. SCD, n = 29 SCD, n = 30 p

Age, Years 64 6 5 (55–76) 64 6 5 (55–77) .89 65 6 6 65 6 6 .79

Education, Years 15 6 3 (7–23) 16 6 4 (10–24) .11 14 6 4 15 6 4 .12

Female Gender, % 71 62 .34 78 67 .29

APOE ε4 Genotype (% ε4/ε4 Carriers) 30 (0) 42 (4) .26 (.11)

Geriatric Depression Scale Score 2 6 2 (0–6) 2 6 2 (0–11) .89

Neuroticism 19 6 7 (8–36) 19 6 8 (8–34) .61

Parent History, % 96 91 .24

Sibling History, % 7 12 .39

rsfMRI Volumes, n 244 6 56 (56–300) 236 6 59 (86–300) .46

Everyday Cognition Questionnaire

Memory 10 6 2 (8–14) 12 6 3 (8–18) ,.001

Language 10 6 2 (9–18) 11 6 2 (9–22) ,.01

Attention 4 6 1 (4–7) 5 6 2 (4–12) .001

Organization skills 6 6 1 (5–8) 6 6 1 (4–12) .06

Planning 5 6 0 (5–7) 5 6 1 (5–8) .92

Visuospatial 7 6 1 (6–10) 8 6 2 (5–17) .07

Neuropsychological Assessment

Immediate memory 100 6 12 (69–123) 102 6 10 (78–120) .01 108 6 11 (85–126) 104 6 9 (85–117) ,.01

Visuospatial 96 6 14 (66–112) 97 6 16 (64–131) .87 95 6 15 (72–126) 97 6 15 (60–131) .73

Language 101 6 8 (83–120) 102 6 10 (85–127) .51 98 6 6 (87–111) 100 6 9 (79–120) .89

Attention 104 6 14 (75–138) 104 6 14 (72–142) .54 105 6 14 (82–125) 104 6 16 (72–142) .41

Delayed memory 101 6 7 (81–116) 103 6 9 (81–124) .06 107 6 7 (95–121) 104 6 7 (86–121) .04

Total cognition 100 6 9 (84–122) 101 6 10 (83–127) .03 103 6 11 (85–128) 102 6 9 (88–123) .03

Data are presented as mean 6 SD (range) or percentages. Neuropsychological data were acquired using the Repeatable Battery for the
Assessment of Neuropsychological Status. p Values of baseline neuropsychological data were acquired with linear mixed models, and p values
of the follow-up data reflect relative cognitive changes between baseline and follow-up of SCD1 compared with SCD2 patients. Displayed
p values were unadjusted for multiple comparisons. Baseline and follow-up demographic data were comparable. Geriatric Depression Scale,
neuroticism, and Everyday Cognition Questionnaires were not repeated at follow-up.

APOE, apolipoprotein E; rsfMRI, resting-state functional magnetic resonance imaging; SCD, subjective cognitive decline.
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on other cognitive domains (all p . .05). Age, education,
gender, and APOE ε4 genotype were comparable between
SCD2 and SCD1, as were neuroticism and depressive symp-
toms (all p . .05).

SCD and Brain Connectivity

To investigate the effect of SCD on connectivity, we per-
formed linear regression analyses. Compared to SCD2,
SCD1 showed comparable connectivity between the pDMN,
avDMN, MTMS, and the rest of the brain (all models adjusted
for age, gender, frame displacement, and APOE ε4; all
p . .05FDR (Table 2). Furthermore, SCD1 had increased
connectivity between the pDMN and the MTMS (b = .26,
p , .05FDR), but not between the pDMN–avDMN or the
MTMS–avDMN (all p . .05FDR) (Figure 1B). The effects did not
change after additional adjustment for depressive symptoms,
degree of neuroticism, or mean cortical thickness (Table 2,
models 3 and 4, respectively). The connectivity between the
dorsomedial prefrontal cortex (control region) and our a priori
defined ROIs, as well as the connectivity between the dor-
somedial prefrontal cortex and the rest of the brain, were
comparable between SCD2 and SCD1. There were no sig-
nificant differences in the number of volumes remaining after
image preprocessing between SCD2 and SCD1 (all p . .05),
Biological Psychiatry: Cognitive Neuroscience and
nor did the minimum number of volumes affect our results
(Table 1 and Supplemental Table S2).

SCD in Relation to Cognition

At baseline, comparable performance was found between
SCD2 and SCD1 on all cognitive domains (all p . .05FDR)
(Table 1). At follow-up, immediate (b = .40, p , .05FDR) and
delayed (b = .46, p , .05FDR) memory improved across
groups, but the extend of immediate memory improvement
was reduced in SCD1 compared to SCD2 (b = 2.64,
p , .05FDR).

Brain Connectivity in Relation to Cognition

We performed linear mixed models to investigate the effects
of connectivity on cognition (Table 3 and Figure 2). Higher
connectivity between MTMS and the rest of the brain was
associated with better baseline immediate memory (b = 7.58,
p , .05FDR), attention (b = 6.51, p , .05FDR), and global
cognition (b = 7.02, p , .05FDR). Likewise, higher pDMN–
avDMN connectivity was associated with better baseline
language function (b = 2.17, p , .05FDR) and global cognition
(b = 1.79, p , .05FDR). In contrast, higher connectivity between
the MTMS and the rest of the brain and pDMN–MTMS con-
nectivity were associated with lower immediate memory over
Neuroimaging May 2018; 3:463–472 www.sobp.org/BPCNNI 467
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Table 2. Effects of Subjective Cognitive Decline Status on
Functional Brain Connectivity

Model
SCD Status Standard b

(p Value)

ROIs With the Rest of the Brain

pDMN–Rest of the Brain 1 .14 (.17)

2 .17 (.11)

3 .17 (.09)

4 .13 (.16)

MTMS–Rest of the Brain 1 .15 (.12)

2 .17 (.049)a

3 .17 (.053)

4 .18 (.049)a

avDMN–Rest of the Brain 1 2.14 (.16)

2 2.14 (.16)

3 2.15 (.13)

4 2.14 (.14)

Between ROIs

pDMN–MTMS 1 .23 (.02)a,b

2 .26 (,.01)a,b

3 .26 (,.01)a,b

4 .23 (,.01)a,b

pDMN–avDMN 1 .03 (.72)

2 .02 (.82)

3 .02 (.87)

4 .04 (.66)

MTMS–avDMN 1 .00 (.97)

2 2.01 (.91)

3 2.02 (.83)

4 2.01 (.89)

Data are presented as standardized b estimates with corresponding
p values. b values for SCD status represent the estimated additional
change in connectivity if individuals reported SCD. Model 1 is adjusted
for age, gender, and frame displacement. Model 2 is adjusted for age,
gender, frame displacement, and APOE ε4. Model 3 is adjusted for age,
gender, frame displacement, APOE ε4, Geriatric Depression Scale, and
neuroticism. Model 4 is adjusted for age, gender, frame displacement,
APOE ε4, and mean cortical thickness. The rest of the brain represents
all cortical parcels, excluding the one of interest, used as one single ROI.

APOE, apolipoprotein E; avDMN, anterior ventral default mode
network; MTMS, medial temporal memory system; pDMN, posterior
default mode network; ROI, region of interest; SCD, subjective
cognitive decline.

ap , .05.
bSignificant false discovery rate–corrected p values (p , .05FDR).
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time (b = 23.33 and b = 25.32, respectively; both p , .05FDR).
There were no associations between MTMS–avDMN connec-
tivity, avDMN, or pDMN with the rest of the brain and baseline
or longitudinal cognition (all p . .05FDR).
Simultaneous Effects of Brain Connectivity and
SCD in Relation to Cognition

As a post hoc analysis we performed linear mixed models to
investigate the joint effects of connectivity and SCD on
cognitive performance. Higher connectivity between MTMS
and the rest of the brain (b = 25.39, p , .05FDR) and pDMN–
MTMS connectivity (b = 23.37, p , .05FDR), but not SCD
status, were associated with lower cognitive performance over
468 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging M
time. There were no significant three-way interaction effects
between time by connectivity by SCD.

Connectivity Between A Priori Defined ROIs and
All Other Brain Parcels

For exploratory purposes, we assessed the relationship
between the pDMN, avDMN, MTMS, and all other brain par-
cels. No results survived p , .05FDR correction. Using a more
lenient statistical threshold of p , .005, we found that
compared with SCD2, SCD1 showed increased pDMN con-
nectivity in relation to the bilateral middle cingulate and left
inferior parietal cortices and increased MTMS connectivity in
relation to bilateral precuneus, middle cingulate, posterior
cingulate, inferior occipital, and left inferior parietal cortices
(Supplemental Figure S1).

DISCUSSION

We found that self-perceived cognitive decline is associated
with increased connectivity between AD vulnerable regions.
Moreover, increased brain connectivity was related to better
baseline cognitive performance but to a reduced rate of
cognitive performance over time in individuals with SCD
compared to those without SCD. Our findings suggest that
SCD is an informative parameter in cognitively normal in-
dividuals with a family history of AD.

Both family history of AD and SCD are associated with an
increased risk of incident progression to dementia (1,2). AD
pathogenesis takes years to develop, and it is hypothesized
that functional abnormalities precede clinical symptoms (6).
For this reason, it is conceivable that functional connectivity
changes in individuals at risk may occur before extensive
structural brain damage and objective cognitive decline (20).
Combining both subjective and objective cognitive functioning
in relation to brain connectivity could lead to a better under-
standing of early processes related to cognitive decline, and
potentially lead to a better selection for future preventive
strategies or disease-modifying therapies.

Others have shown that pDMN hyperconnectivity is asso-
ciated with AD risk factors in cognitively normal individuals and
could therefore reflect an early disease mechanism related to
future cognitive decline (23,47–51). Hyperconnectivity may be
expressed as increasing temporal covariance of metabolically
active brain regions and is considered to occur after damage to
neural systems as a result of brain plasticity (52). In the current
study, we defined connectivity within a single subject by
means of a correlation of resting-state blood oxygen level–
dependent time series between the pDMN and other ROIs. In
keeping with previous results, we found increased connectivity
between the pDMN and the MTMS in individuals with SCD
(20,53). Moreover, when we additionally adjusted for cortical
thickness these associations remained essentially unchanged,
suggesting that these associations explain variance in brain
connectivity beyond cortical atrophy. So far, rsfMRI studies
on cognitively intact individuals have found increased
(20,23,48,49,53), decreased (18,39), and mixed (47) pDMN
connectivity in relation to the presence of AD risk factors.
Furthermore, memory clinic studies have demonstrated altered
brain connectivity in patients with SCD compared to control
subjects and patients with AD (22–24). It is hypothesized that
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Table 3. Associations Between Brain Connectivity and Cognition

Cognitive Domain Connectivity Visuospatial Immediate Memory Language Attention Delayed Memory Total Cognition

pDMN–Rest of the brain BL .76 (.70) 2.71 (.17) 2.14 (.32) 1.47 (.23) 2.89 (.60) 2.41 (.17)

FU .23 (.86) 22.67 (.04)a 21.42 (.32) 2.43 (.70) .14 (.99) 21.55 (.18)

MTMS–Rest of the brain BL .54 (.86) 7.58 (.01)a,b 2.71 (.40) 6.51 (.01)a,b 22.82 (.27) 7.02 (.01)a,b

FU 2.32 (.88) 25.32 (.01)a,b 2.68 (.76) 22.07 (.07) 21.12 (.52) 23.67 (.04)a

avDMN–Rest of the brain BL 1.55 (.41) 21.55 (.41) .14 (.95) 2.90 (.09) .91 (.57) 1.30 (.44)

FU 2.98 (.45) 1.16 (.37) .20 (.88) 2.52 (.62)a 21.28 (.23) 2.18 (.87)

pDMN–MTMS BL 21.60 (.35) 3.58 (.04)a 3.67 (.047)a 1.58 (.32) .84 (.58) 2.65 (.08)

FU 21.42 (.25) 23.11 (.01)a,b 22.68 (.04)a 21.59 (.11) 2.35 (.74) 22.20 (.03)a

pDMN–avDMN BL 1.24 (.10) 2.04 (.95) 2.17 (.01)a,b 1.38 (.04)a .74 (.26) 1.79 (.01)a,b

FU 2.44 (.38) 2.12 (.82) 21.22 (.03)a 2.47 (.26) 2.76 (.08) 2.89 (.04)a

MTMS–avDMN BL .75 (.60) 2.35 (.82) .01 (.99) 1.91 (.17) 2.47 (.06) 1.48 (.28)

FU .03 (.98) .08 (.94) .28 (.80) 2.47 (.58) 21.55 (.07) 2.27 (.75)

SCD BL 2.06 (.87 .89 (.01)a .25 (.51) .20 (.54) .59 (.05) .68 (.03)a

FU .08 (.73) 2.64 (.01)a,b 2.04 (.89) 2.17 (.41) 2.42 (.04)a 2.45 (.03)a

Data presented as standardized b estimates (p value). “Rest” implicates the rest of the brain representing all cortical parcels, excluding the one of
interest, used as one single region of interest. Linear mixed models between connectivity and cognition were adjusted for age, sex, education, and
contained an interaction term for connectivity by time.

avDMN, anterior ventral default mode network; BL, baseline; FU, follow-up; MTMS, medial temporal memory system; pDMN, posterior default
mode network; SCD, subjective cognitive decline.

ap , .05.
bSignificant false discovery rate–corrected p values (p , .05FDR).
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before a global connectivity failure, brain regions of high
activity could accelerate pathology (54,55) or reflect an
attempted compensation of early pathophysiological pro-
cesses (19). While there is controversy about the interpretation
of connectivity patterns, pDMN hyperconnectivity has been
demonstrated in predementia stages across imaging modal-
ities with rsfMRI, magnetoencephalography, and cerebral
metabolism (i.e., fluorodeoxyglucose positron emission
tomography) (23,47–51,54,56–61). Our findings further support
the idea that pDMN hyperconnectivity, particularly between the
pDMN and MTMS, could be one the earliest network changes
related to AD, especially since none of our participants showed
any signs of cognitive impairment at baseline or follow-up.
Others showed that higher pDMN connectivity is related to
better concurrent global cognition along the AD spectrum (18).
We extend these findings by showing that higher pDMN–
MTMS connectivity was associated with better concurrent
cognitive performance but with lower immediate memory and
global cognition over time. Similarly, our data indicate that
higher connectivity between the MTMS and the rest of the
brain is also involved in early cognitive changes, and that these
associations were independent of SCD status. Previous
research has shown that the MTMS becomes engaged when
decisions involve constructing a mental scene based on
memory (36). We furthermore provide evidence that the degree
of MTMS connectivity is also related to immediate recall of
verbal information, attention, and global cognition. Taken
together, our findings suggest that hyperconnectivity is related
to better concurrent cognitive performance, but could have a
detrimental effect over time in cognitively normal individuals.
These findings could reflect decline during normal aging or
resemble one of the earliest changes related to AD.

Baseline cognitive performance was comparable between
individuals with and without SCD. Over time, when looking
across groups, immediate and delayed memory improved,
Biological Psychiatry: Cognitive Neuroscience and
likely reflecting memory-selective practice effects that often
occur in cognitively normal individuals (62). The amplitude
of the immediate memory recall improvement was, however,
reduced in SCD1 individuals when compared with SCD2

individuals. Others have shown that SCD1 memory clinic
patients have poorer memory functioning over time compared
to control subjects (8,63). One explanation is that learning
abilities (i.e., practice effects) tend to weaken in individuals with
SCD, and might be an early form of learning “stagnation,”
which is in line with evidence that practice effects diminish in
preclinical AD (64,65). We hypothesize that individuals who
report self-perceived cognitive decline can preserve memory
function for some time, but deteriorate in the long run.
Notwithstanding, future studies are necessary to fully elucidate
early stages of cognitive changes.

A strength of our study is that it investigated self-perceived
decline in a unique sample of individuals with a family history of
AD in conjunction with state-of-the-art imaging techniques.
Several limitations also warrant attention. First, our follow-up
duration was relatively short, and none of the participants
in this sample showed incident clinical progression. Nonethe-
less, we did find altered connectivity related to cognitive
decline in regions vulnerable to AD. Unfortunately, other bio-
markers such as amyloid-b and tau protein levels that could
further corroborate evidence of AD pathogenesis have not
yet been acquired. Some studies have proposed that con-
nectivity changes might even precede measurable pathology
(18,47,54,55). In this regard, our results may be potentially
relevant. Second, cognitive complaints in community-dwelling
individuals could be caused by a myriad of factors. Self-
perceived decline could be a reflection of underlying neuro-
degenerative disease but could also be induced by mental
illness, substance abuse, sleep disturbances, neuroticism, and
normal aging (5). Family history in itself could also induce
anxiety and worries for AD. We therefore adjusted our
Neuroimaging May 2018; 3:463–472 www.sobp.org/BPCNNI 469
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connectivity models for depressive symptoms and neuroti-
cism, but this did not change the results. Nevertheless, future
research should investigate whether family history could affect
the phenotype of cognitive complaints. Finally, because we
studied asymptomatic individuals with a family history of AD, it
is unclear whether our findings can be extrapolated to
community-dwelling persons without a family history of AD.

In sum, SCD in cognitively normal individuals at elevated
risk of AD is associated with a brain connectivity pattern that
mirrors early AD-related connectivity failure. Our findings
illustrate that SCD in individuals with a family history of AD is a
relevant phenomenon that may foreshadow subsequent
cognitive decline. Future studies may elucidate the nature of
SCD in cognitively normal individuals who have a family history
of AD and may disentangle the concomitant effects with other
biomarkers in relation to AD pathogenesis.
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