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Abstract
Vascular risk factors (e.g. hypertension, dyslipidemia and 
diabetes) are well known risk factors for Alzheimer’ disease. 
These vascular risk factors lead to vascular brain injuries, which 
also increase the likelihood of dementia. The advent of amyloid 
PET imaging has helped establish that vascular risk factors also 
lead to Alzheimer’s disease via pathways that are independent 
from vascular brain injuries, at least, when vascular brain 
injuries are measured as white matter lesions and infarcts. 
While vascular brain injuries (white matter lesions and infarcts) 
do not seem to influence amyloid pathology, some evidence 
from amyloid imaging suggests that increased vascular risk 
is related to increased amyloid burden. Furthermore, while 
vascular brain injuries and amyloid have an additive and 
independent impact on brain integrity, vascular risk factors 
might potentiate the impact of amyloid on cortical thickness 
on brain regions vulnerable to Alzheimer’s disease. New 
research should further explore and confirm, or refute, possible 
interactions between amyloid and vascular risk factors on brain 
integrity and cognition. Neuroimaging tools used to assess 
vascular brain integrity should also be expanded. Measuring 
cortical blood flow or damage to the capillary system might, 
for instance, give insight about how vascular risk factors can be 
associated to amyloid burden and impact. These findings also 
stress the need for monitoring vascular risk factors in midlife as 
a strategy for Alzheimer’s disease prevention. .
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Introduction 

H ow do vascular factors, such as vascular 
diseases or vascular brain injuries (VBI, also 
often called cerebrovascular disease), increase 

the risk of Alzheimer disease (AD)? Are Alzheimer and 
vascular pathologies independent diseases, or does the 
presence of one pathology influence the presence and 
the impact of the other? Can vascular risk factors be 
good preventive targets for AD, and if so, why and when 
should they be targeted? Although the answers to these 
questions remain unclear, they represent some of the 
oldest issues in understanding relationships between 
Alzheimer and vascular diseases. Neuroimaging has 
long helped us to detect and quantify brain vascular 

diseases. The more recent advent of amyloid imaging 
now permits the detection and quantitation of amyloid-
beta (Aβ), permitting new types of studies to explore 
complex relationships between Alzheimer and vascular 
pathologies. The current review first presents a brief 
overview of knowledge about the association between 
AD pathology and vascular factors (both VBI and 
vascular risk factors) from epidemiology and autopsy 
studies. We subsequently address what has been learned 
since the advent of in-vivo Aβ imaging. Possible avenues 
for prevention and treatments are also explored along 
with future research directions. This review does not 
intend to be an exhaustive review of the literature, but 
more an overview of where we are and where we should 
go next.      

The cause(s) of Alzheimer’s disease

The major obstacle to AD prevention and treatment 
is that the cause(s) of the disease is still unknown. In 
1991, it was proposed that cerebral amyloid deposition 
represents the key pathogenic mechanism of AD 
development (1). The amyloid hypothesis suggested 
that amyloid initiates a cascade of pathological events, 
including the overexpression of neurofibrillary tangles, 
that lead to neurodegeneration and cognitive decline 
(2). The amyloid hypothesis finds its strongest support 
in the several varieties of familial AD that invariably 
result from genetic mutations which influence amyloid 
accumulation. In late onset AD, however, the causes 
likely include a combination of genetic, environmental, 
and lifestyle factors that act in concert to influence 
individual risk for development of disease and 
its associated symptoms. Specifically, while amyloid 
deposition seems still to be a key feature of late disease, 
other factors moderate its impact on brain integrity 
and cognition. Also, because late onset AD patients 
do not have a genetic mutation that causes early Aβ 
production, other genetic and environmental factors must 
influence Aβ accumulation. Identifying these factors and 
understanding the mechanism by which they influence 
the risk of AD is important from a prevention point of 
view, but also to guide new drug development.
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Vascular and cerebrovascular diseases as risk 
factors for Alzheimer’ disease: knowledge 
from epidemiology and autopsy research 
studies

Vascular risk factors such as hypertension, 
dyslipidemia and diabetes are well known risk factors 
for AD (3). When looking at the prevalence of vascular 
factors compared to other risk factors (Table 1), it is 
evident that vascular factors should be a particular 
target for AD prevention. Furthermore, individuals with 
multiple vascular risks have more than twice the risk of 
developing dementia associated with AD compared to 
elderly without vascular risk factors (4). These vascular 
risk factors lead to VBI (e.g. white matter lesions and 
infarcts), which also increase the likelihood of dementia 
(3, 5). In fact, autopsy studies suggest that the most 
prevalent cause of dementia is mixed dementia, often 
defined by the presence of Alzheimer plus vascular 
pathologies (6). Autopsy studies further suggest 
that, while about a quarter of people can be free from 
dementia when presenting with Alzheimer pathology 
with no other comorbidity, very few persons (less than 
7%) can stay free from dementia when both Alzheimer 
and vascular pathologies are present (6). Interestingly, 
autopsy studies also showed that less severe Alzheimer’s 
pathology is needed to develop Alzheimer’s dementia 
in the presence of infarcts or white matter lesions (7). 
Given the strong co-occurrence between both diseases, 
Alzheimer’s and vascular dementia are often presented as 
a continuum: with pure Alzheimer’s or vascular dementia 
representing the two extremes, and ‘mixed’ dementia 
in between and representing most older people with 
dementia. 

Because both pathologies frequently occur together, it 
is a major challenge to assign the degree of importance 
to either of them with regard to their effects on brain 
and cognitive integrity. Before Aβ-imaging, assessing 
the respective impact of both pathologies was only 
possible in autopsy-defined groups. However, even 
with the availability of autopsy data, or now with the 
availability of quantitative measures of Aβ deposition, 
assigning a role to each pathology when they are 
mixed is problematic. This is because such effects likely 
depend on the amount of each pathology, the length 
of time the pathology has been present, the location 
of pathology (particularly true for cerebrovascular 
disease which can be more focal than Aβ), and many 
aspects of the individual subject’s genetic, medical, and 
environmental background that could increase or limit 
susceptibility to each pathological process. Another 
challenging question, based on the strong associations 
between Alzheimer’s and vascular pathologies, is 
whether the impact of both pathologies are independent 
and additive, or if the presence of one pathology 
influences the presence and the impact of the other. 

It is possible that 1) both pathologies share common 
drivers (i.e. age, Apolipoprotein E (ApoE)) but act via 
independent pathways, 2) that one pathology drives 
the other pathology and/or 3) that both pathologies 
interact and that the join effect of both pathologies on 
brain and cognition is greater than their sum. Autopsy 
studies reported insufficient data supporting a direct link 
(options 2 and 3 above) between Alzheimer and vascular 
pathologies (8). It has therefore been assumed that both 
diseases occur and act independently, and additively 
increase the risk of dementia. Figure 1 schematises these 
independent pathways. 

Aβ imaging

In 2004, the first in-vivo radiotracer to specifically track 
brain Aβ was reported (9). The Pittsburgh Compound B 
(PIB)-PET tracer is a 11C radiotracer that binds to fibrillar 
deposits of Aβ protein in plaques and cerebrovascular 
amyloid (CAA). Since then several 18F-labeled (half-
life of 110 min) compounds have been created. Using 
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Table 1. Risk factors for Alzheimer’ disease
Alzheimer’s disease risk factors 

Vascular risk factors and diseases 

Hypertension 1

Hypotension
Hypercholesterolemia 1

Diabetes mellitus
Smoking
Thrombotic episodes
Congestive heart failure      
Cardiac arrhythmia
Atrial fibrillation

Cerebrovascular risk factors 

Ischemic and silent stroke
Transient ischemic attack

Other risk factors

Age1

ApoE4 allele1

Head injury1

Low education
Low lifetime cognitive activity1

Psychiatric factors (depression1, anxiety, apathy)
Sleep disorders1

Presented are common risk factors for AD; 1. Factors that have additionally been 
associated with increased brain Aβ. For hypercholesterolemia, both low HDL and 
high LDL cholesterol, but not total cholesterol, have been associated with increase 
Aβ (34). Aggregate vascular risk has also been associated with increased Aβ (33).
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these radiotracers it is now possible to track brain and 
cognitive changes associated with “pure” Alzheimer or 
vascular dementia, as well as subtle cognitive changes 
that are independent from both pathologies, which might 
include what is often termed normal aging. It is also 
possible to assess the relationship between Aβ, VBI and 
vascular risk factors in-vivo and test if Aβ and vascular 
factors act via independent or common pathways. 

Autopsy studies suggest that Alzheimer and vascular pathologies increase the 
risk of AD via independent and additive pathways. Because both pathologies 
frequently co-occur and because vascular risk factors such as hypertension and 
diabetes are well known risk factors for AD, mixed dementia is often considered 
the most frequent type of dementia. VBI : vascular brain injuries. Aβ: amyloid-beta

Aβ and vascular brain injuries: independent 
or dependant pathways?

Supporting autopsy findings, many in-vivo studies 
assessing a relationship between Aβ and VBI (white 
matter lesions or infarcts) found no or slight correlation 
between the two factors in cognitively normal older 
adults, or older adults in preclinical or clinical phases of 
AD (10-18), even though increased white matter lesions 
have sometimes been reported in AD patients (14, 15).  
Increased PIB-PET signal has in turn been associated 
with increased white matter lesions in persons presenting 
cerebral amyloid angiopathy (CAA) (19). Therefore 
CAA might have a stronger relationship with VBI than 
parenchymal Aβ. Whether transient Aβ increase follows 
an acute vascular event in humans, as has been suggested 
in rodents (20), still needs to be tested. 

Concerning the impact of Aβ and VBI on brain and 
cognitive integrity, it seems that both factors mainly 
act via independent pathways, which is also in line 
with autopsy studies. Lower cerebrospinal fluid Aβ 
(which is inversely associated with brain Aβ) has been 
associated with decreased temporoparietal metabolism 

while greater white matter lesions have been associated 
with decreased frontal metabolism in individuals with 
mild cognitive impairment that subsequently progressed 
to dementia (21). Hippocampal volume and precuneus 
thickness have further been found to mediate (account 
for) the relationship between Aβ and memory (22-24), 
while frontal thickness has been reported to mediate the 
relationship between VBI and executive function (22) in 
cognitively impaired patients. These results do not imply 
that VBI cannot target brain regions typically affected by 
AD pathology (18, 25), but they suggest that VBI has a 
predominant impact on frontal functions. Similarly, while 
VBI is primarily associated with executive dysfunctions, 
it is not restricted to them, or to the impact of frontal-
executive dysfunctions on other cognitive domains (10, 
11, 26). 

Proposed conception of the relationship between AD and vascular factors. While 
Aβ burden and vascular brain injuries (VBI, white matter lesions and infarcts) 
still have distinct pathways, vascular risk factors are associated with both Aβ 
burden and VBI. Vascular risk factors are also associated with brain integrity via a 
pathway that is independent from Aβ and VBI. Accordingly, vascular risk factors 
should be a particular target for prevention. Aβ: amyloid-beta. BBB: blood brain 
carrier. CBF: cerebral blood flow

The association between white matter structural 
integrity, measured with diffusion tensor imaging 
(DTI), and Aβ needs to be further explored given the 
inconsistent results reported in the literature (13, 27). 
Furthermore, even an association between these DTI 
changes and white matter lesions (13, 27) does not 
exclude the possibility that they are not all from vascular 
origin. The question of whether VBI potentiates the 
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Figure 1. Independent Alzheimer and vascular pathways: 
an autopsy based model

Figure 2. Alzheimer and vascular independent and 
shared pathways : an in-vivo based model



association between Aβ and functional connectivity, or 
if VBI and Aβ affect different brain networks, also needs 
further exploration. Indeed, while evidence suggests a 
link between Aβ and brain network functions measured 
with functional MRI (26), the independent or shared 
impact of white matter lesions on brain connectivity is 
unknown.

Legend: Statistical cortical maps showing the association among Aβ, VBI (white 
matter hyperintensity), vascular risk (FCRP score) and cortical thickness in a 
sample of 66 older (64 for VBI) adults enriched for vascular diseases. Results 
suggest that increased vascular risk, increased Aβ burden and increased VBI 
are associated with thinner cortex. Statistical surface maps were created using a 
vertex-wise statistical thresholds of p < 0.05. The analyses are corrected for age, 
cognitive status, and multiple comparisons. This figure is based on a previously 
publication (38) 

With the constant improvement of neuroimaging 
tools, it is now possible to go beyond the assessment of 
WML/infarcts (or DTI) and explore other cerebrovascular 
mechanisms that might be related to Aβ. Indeed the 
multiple pathways by which amyloid and vascular 
factors could be linked do not necessary involve white 
matter lesions or infarcts (3, 28, 29), a fact that should 
be keep in mind and further explored. A recent study 
suggested for instance an association between Aβ and 
lower cerebral blood flow assessed using MRI-based 
arterial spin labelling (30). One explanation might be that 
lower blood flow diminishes Aβ clearance, which in turn 
reduces cerebral blood flow via a harmful vicious cycle 
(28). Assessing the integrity of the blood brain barrier 
using an MR contrast (28), brain vasoreactivity using 
carbon dioxide inhalation (31), or cerebral blood volume 
(as a proxy of capillary density) using a contrast agent 
and functional MRI (32), in relationship to Aβ would 
also be of interest. Even if still difficult to examine using 
existing neuroimaging tools, assessing the link between 
Aβ and microinfarcts might lead to new insight about the 
relationship between vascular factors and Aβ.

Aβ and vascular risk factors: independent or 
dependant pathways?

Although VBI and vascular risk factors, such as 
hypertension, cholesterol and diabetes, are linked, 
vascular risk factors can occur in the absence of VBI and 
vice versa. Vascular risk factors and VBI should therefore 
be considered and treated as two separate entities. While 
no clear association has been found between Aβ and VBI, 

there is strong evidence suggesting that vascular risk 
factors (aggregate or independent risk) are associated 
with increased brain Aβ (33-36). Importantly, some of 
these observations were found in late middle age subjects 
(36), suggesting that intervention targeting vascular risk 
factors should probably be started in midlife. Supporting 
that idea, the impact of vascular risk factors on brain 
integrity can already be detected in young adults (37). 
While the process by which vascular risk factors might 
lead to Aβ are mainly unknown, assessing these “other 
cerebrovascular mechanisms” are of interest since 
changes in cerebral blood flow, diminution of blood brain 
barrier permeability and vascular oxidative metabolism 
are all possible mechanisms by which vascular risk 
factors might increase Aβ burden (28).

In one of our previous studies we suggested that 
vascular risk factors interact with Aβ to reduce cortical 
thickness in brain regions known to be vulnerable to 
AD (38). This observation was independent of VBI 
and found when looking at aggregate vascular burden 
(assessed using the total Framingham cardiovascular 
risk profile, FCRP, score) or levels of circulating high-
density lipoprotein (HDL) cholesterol. These data suggest 
that the impact of Aβ on cortical thickness might be 
potentiated by the presence of vascular burden and/or 
vice versa. In this same study, we also presented results 
suggesting that vascular risk factors can be associated 
with cortical thinning independently of Aβ and VBI. 
Therefore, vascular risk factors could influence AD risk 
via at least three pathways: 1) by increasing VBI, 2) by 
facilitating Aβ burden (and having a synergistic effect 
with it on brain integrity), and 3) by direct effects on the 
brain independently of Aβ and VBI (Figure 2). This last 
pathway should not be neglected as vascular risk factors 
can start early in life and therefore probably have a wide 
spread impact by the time a person reaches 65 years old, 
as suggested in Figure 3. Even if vascular risk factors 
do not lead to dementia by themselves, they probably 
diminish the “brain reserve”, conceptualised as a buffer 
that allows individuals to stay free from cognitive 
impairment in the presence of brain pathology. These 
“frail” brains might also be more vulnerable to other 
brain pathologies, as the interaction with Aβ suggests 
(38).

In this same study, it was also suggested that 
cholesterol-lowering medications might be protective 
against the negative impact of vascular risk factors and 
Aβ on cortical thickness. Both higher FCRP and higher 
Aβ burden were associated with less cortical thinning 
in subjects that were taking cholesterol-lowering drugs 
when compared with subjects who were not taking 
cholesterol drugs. This finding, which needs replication, 
is in line with other studies suggesting that statins 
confer some level of neuro-protection against late-life 
development of AD (39, 40, see also 41). Given that 
statin treatment has shown no reliable effect on clinical 
symptoms in subjects with dementia, it is more than 
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Figure 3. Impact of Aβ, VBI and vascular risk factors 
on cortical thickness in older adults with a spectrum of 
vascular diseases
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plausible that statins only have an impact when started in 
midlife. Also, not all classes of statins necessarily confer 
the same protective benefit (40), an effect that needs to be 
better understood.

Apolipoprotein E, Aβ and vascular factors

ApoE is a well-known genetic risk factor for AD (3, 
42), with ~ 60% of AD patients presenting at least one 
ε4 allele (43). Interestingly, ApoE seems to be a common 
upstream driver to both Aβ and vascular burden, 
reinforcing the association between these two factors. 
ApoE, for example has been suggested to play a key 
role in Aβ accumulation and clearance, with ApoE4 
being associated with increased Aβ burden (44) and 
ApoE2 being associated with lower Aβ burden (45). 
Because of its role in lipid metabolism regulation, ApoE4 
also influences vascular risk factors and cardiovascular 
diseases (46), which in turn affects the risk of AD, as 
presented previously. Other mechanisms by which 
ApoE4 might influence the clinical expression of AD 
include neuronal inflammation, less efficient neuronal 
repair, diminished blood barrier integrity, increased 
tau phosphorylation, neurofibrillary tangle formation, 
neuronal mitochondrial dysfunction, and decreased 
GABAergic interneuron selectivity (47, 48). Given its 
wide range of functions, ApoE is probably a key factor to 
target for AD prevention and treatment. 

Alzheimer’s disease prevention and treatment

Because the disease starts up to 30 years before the 
onset of dementia (49), and because vascular risk factors 
already impair the brain in middle age (37), preventive 
strategies for AD (table 2) should be implemented as 
early as possible. Most of these strategies should also be 
adopted in late life as they may still confer a benefit. For 
instance, while monitoring vascular risk may be a good 
prevention target in midlife, treating vascular risk in late 
life as been found to improve cognition in individuals 
with mild cognitive impairment (50). 

In addition to targeting vascular risk factors, 
one obvious treatment target for AD is anti-amyloid 
therapies. Even if these therapies failed in dementia 
patients, they might have beneficial impact at preclinical 
or presymptomatic stages of the disease (51). Clinical 
trials enrolling subjects with autosomal-dominant 
familial AD and cognitively normal amyloid-positive 
older adults from the general population are currently 
ongoing. Given the possible vascular side effect of anti-
amyloid therapies (52), vascular brain health will be 
monitored closely in these trials as they may predict 
adverse side effects.  

Several other avenues should be tested for AD 
prevention and treatment in addition to Aβ and 
vascular therapies as the disease is multifactorial. 
More importantly research should be done to assess 
the mechanism by which these other factors can 
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Table 2. Preventive and treatment targets for Alzheimer’ disease
Prevention targets in mid and late life Treatment targets in presymptomatic AD

Treatment of VRF and VD   Anti-Aβ treatment
  - Anti-hypertensive drugs - Anti-Aβ antibodies
  - Anti-hyperlipidemic drugs - Blocking Aβ production enzymes 
  - Anti-platelet agents
  - Anti-diabetes drugs Targeting ApoE and ApoE receptors

- Convert an ApoE4 to an ApoE3-like molecule (By blocking 
domain interaction in ApoE4)Treatment of psychiatric symptoms

  - Anti-depressive drugs - Increase ApoE levels (this might however have adverse effect 
on Aβ expression and neurotoxicity)  - Anxiolytic agents

  - Therapy - Regulate cholesterol homeostasis using Liver X receptors that 
up-regulate ApoE and ABCA1

Lifestyle changes
  - Physical exercise Other
  - Cognitive stimulation - Reducing inflammation
  - Weight control - Improving brain insulin resistance
  - Mediterranean diet - Anti-tangle formation treatments
  - Smoking discontinuation - Nerve growth factor enhancement

- Control abnormal brain activity
Presented are prevention and treatment targets for AD.  This table is intended to present avenues that should be explored and is not restricted to available treatments or 
treatments that have been found to be beneficial. 

Review Article VASCULAR RISK, AΒ AND PREVENTION 



JPAD  - Volume 2, Number 1, 2015 Review Article

diminish the risk of AD since it might lead to new 
treatments. For instance, depression is a well-known 
risk factor for dementia. More recently it was suggested 
that individuals with a lifetime history of depression 
present increased brain Aβ (53). While depression might 
be secondary to Aβ accumulation, it is also important 
to assess if anti-depresant medication can slow Aβ 
accumulation, and hopefully AD progression, as was 
recently suggested (54). Similarly, enhanced lifetime 
cognitive activity has been shown to buffer the effect 
of ApoE4 on Aβ burden (55). While this information 
is valuable by itself for preventative strategies, 
understanding the mechanism by which cognitive 
activity might influence Aβ burden could point to new 
treatment strategies. Such strategies could include 
approaches such as the antiepileptic levetiracetam (56) 
(assuming that cognitive activity attenuate Aβ secretion 
via modulation of neural activity) or cognitive training 
protocols (57). 

As mentioned previously, ApoE is a major risk factors 
for both Alzheimer and vascular pathologies. Increasing 
effort should therefore focus on developing and testing 
drugs that modify ApoE expression and function. 
Promoting ApoE levels, increasing ApoE receptor 2, 
blocking domain interaction in ApoE4, or restoring brain 
vascular integrity are all potential interesting targets (48, 
58-60). 

Conclusion

The absence of a relationship between Aβ and VBI 
(here defined as white matter lesions and infarcts), 
as well as their independent impact on cognition and 
brain integrity, suggests that both factors mainly act via 
independent pathways. Vascular risk factors however, 
seem to have a more direct impact on AD since increased 
vascular risk factors have been associated with increased 
Aβ burden. Furthermore, increased vascular risk factors 
might potentiate the impact of Aβ burden on cortical 
thickness. Given these findings, and the fact that vascular 
risk factors are often treatable, they should represent key 
factors for prevention.

Finally, while everyone is impatiently awaiting the 
results of anti-amyloid therapies in asymptomatic 
individuals, other treatments strategies should also 
be targeted. Among them, drugs that modify ApoE 
metabolism and function might be promising. Effort 
should also be made to understand how protective and 
risk factors such as lifestyle, psychiatric symptoms and 
sleep, influence AD risk. 
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