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McGill University and the Douglas Mental Health
University Institute are situated on traditional
Kanien’keha:ka Territory.
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Finn (2015)

Airan (2016)

Amico (2018)

Demeter (2020)

Finn (2017)

Fingerprinting — Healthy participants

Population

Young adults
Children
Middle-age

Main Findings

Fingerprinting is accurate across time and
modalities, particularly when restricting to the
frontoparietal and default mode networks
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What about the many
functional changes in
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Research question

Are the individual fingerprints changing
during the aging process?
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Methods - Population and measures

mCQE:! Rest/Task
AC

Rest/Task

Taylor 2017
Shafto 2014
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N = 550

Fingerprinting

(between
tasks)

51% female 18-87 years
(50.39 avg)

Inclusion criteria

Cognitively unimpaired
Aged between 18-87
No neurological/psychiatric conditions




Methods — Procedure
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Objective & Hypothesis - 1A

Objective Hypothesis

1A Characterize the stability of the functional 1A Fingerprints should be stable in younger
connectome fingerprints in aging adults but decrease with age
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Methods - Analysis Plan - 1A

Objective 1A : Stability of the fingerprints across ages

% correct ID
(Confidence
Intervals)
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Task-Movie
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Results - Objective 1A

Within-network
Rest — Task (n = 483)
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Results — Objective 1A
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Within-network
Rest — Movie (n = 463)

24.6%
(20.7 - 28.5)

36.9%
(32.5-41.3)

3.2%
(1.6-4.9)

80.1%
(76.5 - 83.8)

91.8%
(89.3-94.3)

28.3%
(79.0 - 86.0)
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(85.4-91.3)

100%
(77.7-84.8)

T T T T

oA

Between-network
Rest — Movie (n = 463)

77.5%
(73.4-81.3)

79.9%
(76.3 - 83.6)

22.0%
(18.3-25.8)

90.9%
(88.3-93.5)

94.6%
(92.5-96.7)

82.5%
(79.0 - 86.0)

95.9%
(94.1-97.7)
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Results — Objective 1A

Within-network
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31.1%
(26.9-35.3)

50.3%
(45.8 - 54.9)

6.7%
(4.4-9.0)

79.9%
(76.3-83.6)

89.4%
(86.6 -92.2)
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Between-network
Task— Movie (n = 483)

80.6%
(77.2-84.1)

86.5%
(83.5-89.5)

26.4%
(22.5-30.3)

94.2%
(92.1-96.2)

96.6%
(95.0 - 98.2)

91.3%
(88.9-93.8)

96.6%
(95.0-98.2)

00

Unique patterns of functional connectivity across tasks are relatively well preserved
during the lifespan, particularly between-network and in the DMN
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Methods - Analysis Plan - 1A

Objective 1A : Stability of the fingerprints across ages

Covariates

3 Frame Number of
2 Displacement HEINMES

Handedness
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Results - Objective 1A
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Results — Objective 1A
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64 ygars.

Fingerprint metrics slowly change non-

linearly in parallel across the lifespan
within...
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whole-brain

Betweenness
coefficients




Cam-CAN

Results — Objective 1A
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Objective & Hypothesis - 1B

Objective Hypothesis

1B Determine which brain regions contribute 1B Frontoparietal and default-
to the fingerprints during the lifespan mode network should contribute most
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Methods - Analysis Plan - 1B

Objective 1B : Connectome predictive modelling

Random split for
training and testing ‘ Test set

Sliding-window -+ Training set Test set

lll - Generalizability

Prediction

(Linear regression)

[~]L]

approach

| — Sample
selection

Measured
metric

overlap

Test sum . .
(Sum of FC for

significant edges)

Training Validation Fingerprint
9ep
set train set metric

Train model

(Linear regression)
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Discard
edge Training sum

Functional

: connectivity

Leave-one-out-
cross-validation

Il - Cross-validation
Pearson r
Fingerprint
metric

21
(Shen et al. 2017; Finn 2015)
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Results - Objective 1B
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Positive features

Model performance
(100 ppl, 40 overlap)

Features train
-& Negative

- Positive

Proportion of predictive to non-predictive edges

Features test

-@ Negative

-@- Positive Average age by window

Significant Negative features

® No
A Yes

Predicted brain regions

P 45 50
Average age by window

Proportion of predictive to non-predictive edges

Average age by window

Networks
@ Default mode
@ Dorsal attention
@ Frontoparietal
Limbic
@ Salience/Ventral attention
@ Somatomotor

@ Visual

Features predictive of fingerprints vary drastically depending on small
variations of the sample selected
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Results — Objective 1B

Younger adults Middle-aged adults Older adults
(18-39 years) (40-59 years) (60-89 years)

ured fingerprinting strength
° o

leasured fingerprinting strength
o o
leasured fingerprinting strength
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Fpos = 0.435 p-val < 0.001 . ® Fpos= 0.207 p-val = 0.009 ozs1—= * % rpos="-0.176 p-val = 0.033
Mneg = -0.023 p-val = 0.768 . oo = 0.135 p-val = 0.089 . Fneg = 0.390 p-val < 0.001
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Predicted fingerprinting strength Predicted fingerprinting strength Predicted fingerprinting strength
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... even if we find our expected results when dividing the sample arbitrarily!




Cam-CAN

Discussion

This project highlighted that:

- Inter-individual differences (i.e., unique patterns of functional connectivity) remain across

the lifespan
(1A) Identifiability is high through the lifespan across conditions, most networks, etc.

(1A) Fingerprint strength and alikeness coefficient slowly change in parallel over the

ages
(1B) No “one-region-fits-all” across individuals to predict functional fingerprints across

the lifespan

Caution when using group-level FC measures in aging
research
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